ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
General Matter to build Kentucky enrichment plant under DOE lease
The Department of Energy’s Office of Environmental Management announced it has signed a lease with General Matter for the reuse of a 100-acre parcel of federal land at the former Paducah Gaseous Diffusion Plant in Kentucky for a new private-sector domestic uranium enrichment facility.
William A. Reupke, D. W. Muir, J. Narl Davidson
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 416-428
Technical Paper | doi.org/10.13182/NSE82-A21456
Articles are hosted by Taylor and Francis Online.
We present algorithms, describe a computer program, and give a computational procedure for the statistical consistency analysis of neutron cross-section data, SN calculations, and measured tritium production in 14-MeV neutron-driven integral assemblies. Algorithms presented include a reduced matrix manipulation technique suitable for many-group, 14-MeV neutron transport calculations. The computer program incorporates these algorithms and is expanded and improved to facilitate analysis of such integral experiments. Details of the computational procedure are given for a natural lithium deuteride experiment performed at the Los Alamos National Laboratory. Results are explained in terms of calculated cross-section sensitivities and uncertainty estimates. They include a downward adjustment of the 7Li(n,xt) 14-MeV cross section from 328 ± 22 to 284 ± 24 mb, which is supported by the trend of recent differential and integral measurements. It is concluded that with appropriate refinements, the techniques of consistency analysis can be usefully applied to the analysis of 14-MeV neutron-driven tritium production integral experiments.