ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. J. Ades, K. L. Peddicord
Nuclear Science and Engineering | Volume 81 | Number 4 | August 1982 | Pages 563-569
Technical Note | doi.org/10.13182/NSE82-A21448
Articles are hosted by Taylor and Francis Online.
An analytical method is presented to estimate the effective thermal conductivity of sphere-pac fuel during restructuring. This method is based on a unit cell model in which a sintering model is used to describe the extent of restructuring occurring between the fuel particles. As a result of sintering, a “neck” is formed between the fuel spheres. The effective conductivity of the sphere-pac bed can then be evaluated in terms of restructuring, i.e., as a function of temperature and necking between the fuel spheres. The effects of other relevant parameters such as the gas pressure in the sphere-pac pin and fission gas release are also included in the model Furthermore, a thermal conductivity criterion is used to determine the matching conductivity boundary, which is defined as the outer radial boundary where fuel restructuring is completed. Fuel restructuring is of particular importance in sphere-pac fuel because of its controlling effect on the temperature distribution. By knowing the effective conductivity, the temperature distribution of the fuel, both in its initial configuration and during restructuring, can be determined. Using the model, the temperature distribution as well as the extent of restructuring can be calculated. This model can be incorporated into computer codes to predict the overall thermal and mechanical performance of sphere-pac fuel pins.