ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
G. C. Pomraning
Nuclear Science and Engineering | Volume 136 | Number 1 | September 2000 | Pages 1-14
Technical Paper | doi.org/10.13182/NSE00-A2144
Articles are hosted by Taylor and Francis Online.
We consider the energy-dependent pencil beam problem for a thin slab with screened Rutherford scattering. Under certain approximations, this problem can be reduced to a monoenergetic problem with an effective depth-dependent scattering cross section [overbar]s(z). The z dependence of this cross section arises from the explicit z dependence of the true scattering cross section s(z,E), as well as from an induced z dependence associated with the energy dependence of s(z,E). Prior work led to a quadrature result for the scalar flux in the special case that [overbar]s is a constant, independent of z. In this paper, we generalize this result by allowing [overbar]s(z) to have an arbitrary z dependence. We use these considerations to show that simple homogenization, namely, replacing [overbar]s(z) by its average over the slab, can lead to significant errors in the scalar flux. A more detailed homogenization algorithm is suggested, involving an effective screening parameter in the screened Rutherford scattering phase function, as well as an effective depth coordinate z.