ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. R. Dwivedi
Nuclear Science and Engineering | Volume 80 | Number 1 | January 1982 | Pages 172-178
Technical Paper | doi.org/10.13182/NSE82-A21413
Articles are hosted by Taylor and Francis Online.
Neutron or radiation transport kernels in general have two factors, namely, the space transition part and the energy-angle transition part. Importance biasing schemes are obtained here for these two factors separately leading to zero variance estimation by Monte Carlo. These biasing schemes are different from the one obtained by straightforward extension of importance biasing of the transport kernel. New biasing schemes are obtained for collision, track-length, and expectation estimators. Using the moments equations developed by Amster and Djomehri and extended by Lux to treat nonanalog games it is shown that these new biasing schemes lead to zero variance in the Monte Carlo estimation of reaction rate type of quantities.