ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
H. Tellier
Nuclear Science and Engineering | Volume 79 | Number 4 | December 1981 | Pages 393-403
Technical Paper | doi.org/10.13182/NSE81-A21390
Articles are hosted by Taylor and Francis Online.
Until now, there has been a discrepancy between the computed and the measured values of the 238U effective capture integral. The former has always been greater than the latter. For this reason, the reactor physicists have used an adjustment of the computed value. At the present time, the accuracy of the cross-section knowledge has increased, and the reactor computation codes are almost exact. Such an adjustment, therefore, is no longer justified. Recently, several new measurements of the resonance parameters were carried out and the use of a multilevel formalism was suggested to compute the 238U cross sections. This paper shows that the simultaneous use of recent parameters and the Reich-Moore formalism explain the discrepancy. For thermal neutron reactors, and depending on the neutron spectrum hardness, between one-half and two-thirds of this discrepancy is explained by the neutron data and the remainder by the multilevel formalism. This last effect is not negligible. We have done similar studies for 232Th, but in this latter case the multilevel effect was found to be much smaller than for the 238U and can be neglected in most applications.