ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
T. F. Wimett, H. C. Paxton
Nuclear Science and Engineering | Volume 78 | Number 4 | August 1981 | Pages 425-431
Technical Note | doi.org/10.13182/NSE81-A21379
Articles are hosted by Taylor and Francis Online.
A critical assembly with circulating enriched uranium solution was operated for brief periods at power up to 2 MW corresponding to a core temperature differential of 13°C. Although delayed neutron precursors were swept out of the critical region, contributing little to control, power followed excess reactivity satisfactorily. At excess reactivity of 0.2 dollar, power oscillations began to appear, and above ∼0.5 dollar they diverged. The 1-s period appears to be associated with vibration of unconstrained piping. Reactivity quench coefficients are greater than those measured without flow. The difference is attributed to macroscopic release of radiolytic gas.