ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
G. Winkler, V. Spiegel, C. M. Eisenhauer, D. L. Smith
Nuclear Science and Engineering | Volume 78 | Number 4 | August 1981 | Pages 415-419
Technical Note | doi.org/10.13182/NSE81-A21377
Articles are hosted by Taylor and Francis Online.
The average cross section for the reaction 63Cu(n, α)60Co has been measured absolutely in the 252Cf spontaneous fission neutron field by activation in compensated flux geometry with an accuracy of ∼2.4% (1α). A near-point source of 252Cf and a light mass source-detector assembly in a low-scattering environment was used. The resulting cross-section value was compared with calculated values obtained by convoluting the spectral distribution of 252Cf neutrons with existing energy-differential data for the reaction 63Cu(n, α)60Co. There is very good agreement (within 5%) between the experimental and the calculated average cross section if the results from a recent measurement of the 63Cu(n, α)60Co excitation function are used. Thus the reaction 63Cu(n, α)60Co, which is an important threshold reaction in reactor dosimetry, fulfills the conditions for a Category I neutron-dosimetry reaction for fission reactor applications.