ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
General Matter to build Kentucky enrichment plant under DOE lease
The Department of Energy’s Office of Environmental Management announced it has signed a lease with General Matter for the reuse of a 100-acre parcel of federal land at the former Paducah Gaseous Diffusion Plant in Kentucky for a new private-sector domestic uranium enrichment facility.
Riccardo A. Bonalumi
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 219-229
Technical Note | doi.org/10.13182/NSE81-A21355
Articles are hosted by Taylor and Francis Online.
An explicit, analytical calculation of homogenized cell parameters has been developed for centrally symmetric cells or supercells. For every principal direction, a set of one-directional (noneigenvalue) calculations driven by neutrons injected from outside generate transmission/reflection matrices from which diffusion coefficient and cross-section matrices, generally full, are obtained analytically. The analytical calculation of the homogenized parameters is carried through for two different angular distributions of the injected neutrons (generic, P1) and for two mesh structures (ultrafine, 1 mesh/cell). Reaction-rate matching cross-section matrices are also obtained and are shown to be related to the conventional edge-flux normalized cross sections. Two test problems, covering both heavy water and light water lattices, show the superiority of the homogenized diffusion theory (HDT) parameters over the traditional ones: In the light water lattice problem, the HDT constants perform even better than analogous constants generated by other authors.