ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
Mark W. Crump, John C. Lee
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 192-210
Technical Paper | doi.org/10.13182/NSE81-A21353
Articles are hosted by Taylor and Francis Online.
We present a new computational method developed for fluid flows, in which both compressibility and thermal expansion effects are important. Application of the method in transient thermal-hydraulic analysis of nuclear steam generators is also presented. The fluid model is based on one-dimensional, nonlinear, single-fluid conservation equations for mass, momentum, and energy. An empirical slip flow model is included to enable description of two-phase flows as well as single-phase flows. Numerical solution is based on the implicit continuous-fluid Eulerian (ICE) method, which provides stable numerical solutions for compressible fluid flows. An extension of this method (designated as the EICE method) is developed to account for thermal expansion effects. This is achieved by including implicit energy dependence in coupled equations of mass, momentum, and state, and solving the full system of fluid equations through a two-step iterative technique. The development of the EICE method is presented and discussed, along with specific calculations for once-through and U-tube steam generator transients, natural flow oscillations, and a vessel blowdown transient.