ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Mark W. Crump, John C. Lee
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 192-210
Technical Paper | doi.org/10.13182/NSE81-A21353
Articles are hosted by Taylor and Francis Online.
We present a new computational method developed for fluid flows, in which both compressibility and thermal expansion effects are important. Application of the method in transient thermal-hydraulic analysis of nuclear steam generators is also presented. The fluid model is based on one-dimensional, nonlinear, single-fluid conservation equations for mass, momentum, and energy. An empirical slip flow model is included to enable description of two-phase flows as well as single-phase flows. Numerical solution is based on the implicit continuous-fluid Eulerian (ICE) method, which provides stable numerical solutions for compressible fluid flows. An extension of this method (designated as the EICE method) is developed to account for thermal expansion effects. This is achieved by including implicit energy dependence in coupled equations of mass, momentum, and state, and solving the full system of fluid equations through a two-step iterative technique. The development of the EICE method is presented and discussed, along with specific calculations for once-through and U-tube steam generator transients, natural flow oscillations, and a vessel blowdown transient.