ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Yu. V. Petrov, A. I. Shlyakhter
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 157-167
Technical Paper | doi.org/10.13182/NSE81-A21350
Articles are hosted by Taylor and Francis Online.
An estimate of the cross sections of nuclear reactions with thermal neutrons in terms of the average parameters of the target nucleus (the strength function, the average level spacing, and the average reaction width) is obtained. The probability distributions for the ratios of actual thermal neutron cross sections to their estimated values are introduced. These functions can be calculated from the statistical model. They are calculated for neutron radiative capture and for inelastic neutron acceleration by the isomeric nuclei [as well as the (n, α) reaction, etc.]. Using these results, one can predict the probability of finding the actual thermal neutron cross section in a given interval.