ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
A. B. Smith, P. T. Guenther, J. F. Whalen
Nuclear Science and Engineering | Volume 77 | Number 1 | January 1981 | Pages 110-113
Technical Note | doi.org/10.13182/NSE81-A21344
Articles are hosted by Taylor and Francis Online.
Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of ∼50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elasticscattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of ≳6%. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. The experimental results are compared with previously reported values, as represented by the Evaluated Nuclear Data File-B, Version-V, and areas of consistency and discrepancy noted.