ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NuScale Energy Exploration Center opens at SC State
NuScale Power Corporation’s latest Energy Exploration (E2) Center has opened at South Carolina State University, in Orangeburg. E2 Centers are designed to provide visitors with hands-on experiences in simulated scenarios of operations at nuclear power plants. NuScale has established 10 such centers around the world. The company officially presented the fully installed E2 Center to SC State on May 21, after a collaborative setup and training process was completed.
A. B. Smith, P. T. Guenther, J. F. Whalen
Nuclear Science and Engineering | Volume 77 | Number 1 | January 1981 | Pages 110-113
Technical Note | doi.org/10.13182/NSE81-A21344
Articles are hosted by Taylor and Francis Online.
Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of ∼50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elasticscattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of ≳6%. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. The experimental results are compared with previously reported values, as represented by the Evaluated Nuclear Data File-B, Version-V, and areas of consistency and discrepancy noted.