ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Rouyentan Farhadieh
Nuclear Science and Engineering | Volume 77 | Number 1 | January 1981 | Pages 84-91
Technical Paper | doi.org/10.13182/NSE81-A21341
Articles are hosted by Taylor and Francis Online.
An experimental study of the melting of a vertical surface of a solid by a heated liquid pool of various densities was conducted. The heat transfer mode in the external fluid was by natural turbulent thermal convection. After the onset of melting, although the two media were miscible, the melt and external fluid did not intermix along their mutual vertical interface when densities of the two media were different. The melt flowed upward when the liquid pool was heavier, and downward otherwise. For these cases, the heat transfer to the solid surface was controlled by the flow of the melt layer. As the density of the liquid pool approached that of the melt, the melting rate decreased, assuming a minimum at a liquid-melt density ratio, ρ*, of about one. For ρ* < 1.1, the convective currents within the liquid pool became increasingly effective in the removal of the melt. The mixing of the two media increased, with maximum mixing occurring at ρ* ≈ 1. For this case, convection currents in the liquid pool became the controlling heat transfer mechanism.