ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Rouyentan Farhadieh
Nuclear Science and Engineering | Volume 77 | Number 1 | January 1981 | Pages 84-91
Technical Paper | doi.org/10.13182/NSE81-A21341
Articles are hosted by Taylor and Francis Online.
An experimental study of the melting of a vertical surface of a solid by a heated liquid pool of various densities was conducted. The heat transfer mode in the external fluid was by natural turbulent thermal convection. After the onset of melting, although the two media were miscible, the melt and external fluid did not intermix along their mutual vertical interface when densities of the two media were different. The melt flowed upward when the liquid pool was heavier, and downward otherwise. For these cases, the heat transfer to the solid surface was controlled by the flow of the melt layer. As the density of the liquid pool approached that of the melt, the melting rate decreased, assuming a minimum at a liquid-melt density ratio, ρ*, of about one. For ρ* < 1.1, the convective currents within the liquid pool became increasingly effective in the removal of the melt. The mixing of the two media increased, with maximum mixing occurring at ρ* ≈ 1. For this case, convection currents in the liquid pool became the controlling heat transfer mechanism.