ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
J. L. Rowlands, C. R. Eaton
Nuclear Science and Engineering | Volume 76 | Number 3 | December 1980 | Pages 263-281
Technical Paper | doi.org/10.13182/NSE80-A21317
Articles are hosted by Taylor and Francis Online.
Diffusion theory overestimates neutron transport in voided or low-density regions of a reactor when the diffusion coefficient is defined as 1/3Σtr. Alternative definitions of the diffusion coefficient for such regions have been proposed. The present paper summarizes some definitions of axial diffusion coefficient for cylindrical channels and proposes a modification to an earlier formula. The results of calculations for a channel in a fast reactor supercell model using different formulas are compared and the limitations of this method, which involves changing only the channel diffusion coefficient, are discussed.