ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. V. Gopinath, A. Natarajan, V. Sundararaman
Nuclear Science and Engineering | Volume 75 | Number 2 | August 1980 | Pages 181-184
Technical Note | doi.org/10.13182/NSE80-A21307
Articles are hosted by Taylor and Francis Online.
In the anisotropic source flux iteration technique for solving the radiation transport problems for evaluating the flux integral, the source within the mesh was approximated to a linear form using the nodal source values. It is shown in this Note that at the start of each iteration, in addition to the nodal sources, the source integral over the mesh is also available. Using the source integral as an additional parameter, several linear approximations and a quadratic approximation for the source distribution within the mesh are possible. This Note discusses the relative merits of the various approximations. A comparative analysis of these approximations with the different difference schemes currently in use is also given. Among the linear schemes, the ones retaining the source integral and the gradient or source integral and the terminal nodal source provide very good accuracy. It is also shown that the quadratic scheme retaining both the nodal sources and the source integral provide far more accurate results without significant increase in computer time or memory.