ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
D. V. Gopinath, A. Natarajan, V. Sundararaman
Nuclear Science and Engineering | Volume 75 | Number 2 | August 1980 | Pages 181-184
Technical Note | doi.org/10.13182/NSE80-A21307
Articles are hosted by Taylor and Francis Online.
In the anisotropic source flux iteration technique for solving the radiation transport problems for evaluating the flux integral, the source within the mesh was approximated to a linear form using the nodal source values. It is shown in this Note that at the start of each iteration, in addition to the nodal sources, the source integral over the mesh is also available. Using the source integral as an additional parameter, several linear approximations and a quadratic approximation for the source distribution within the mesh are possible. This Note discusses the relative merits of the various approximations. A comparative analysis of these approximations with the different difference schemes currently in use is also given. Among the linear schemes, the ones retaining the source integral and the gradient or source integral and the terminal nodal source provide very good accuracy. It is also shown that the quadratic scheme retaining both the nodal sources and the source integral provide far more accurate results without significant increase in computer time or memory.