ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. V. Gopinath, A. Natarajan, V. Sundararaman
Nuclear Science and Engineering | Volume 75 | Number 2 | August 1980 | Pages 181-184
Technical Note | doi.org/10.13182/NSE80-A21307
Articles are hosted by Taylor and Francis Online.
In the anisotropic source flux iteration technique for solving the radiation transport problems for evaluating the flux integral, the source within the mesh was approximated to a linear form using the nodal source values. It is shown in this Note that at the start of each iteration, in addition to the nodal sources, the source integral over the mesh is also available. Using the source integral as an additional parameter, several linear approximations and a quadratic approximation for the source distribution within the mesh are possible. This Note discusses the relative merits of the various approximations. A comparative analysis of these approximations with the different difference schemes currently in use is also given. Among the linear schemes, the ones retaining the source integral and the gradient or source integral and the terminal nodal source provide very good accuracy. It is also shown that the quadratic scheme retaining both the nodal sources and the source integral provide far more accurate results without significant increase in computer time or memory.