ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
B. Goel
Nuclear Science and Engineering | Volume 69 | Number 1 | January 1979 | Pages 99-104
Technical Note | doi.org/10.13182/NSE79-A21291
Articles are hosted by Taylor and Francis Online.
It is well established that helium formed in stainless steel by various (n,α) processes has a pronounced effect on its mechanical and dimensional properties. The anomalous production of helium in nickel-based alloys is known to take place via the two-step process: 58Ni(n,γ)59Ni(n,α)56Fe. For thermal neutrons, the 59Ni(n,α)56Fe cross section used to calculate the helium production differs strongly from the value obtained by the direct measurements of this cross section. In this Note, this discrepancy is discussed, and a value of 12.5 ± 1 b based on direct measurements is recommended for future calculations. For fast neutrons, the contribution due to the two-step process has been ignored in the past. It is demonstrated that this contribution is substantial, and it gains in importance as the neutron fluence increases. It is further shown that the usual practice to relate helium production data to thermal- and fast-neutron fluence is inadequate. The details of the neutron spectrum and the cross section are necessary to reliably predict the helium production rate.