ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
B. Goel
Nuclear Science and Engineering | Volume 69 | Number 1 | January 1979 | Pages 99-104
Technical Note | doi.org/10.13182/NSE79-A21291
Articles are hosted by Taylor and Francis Online.
It is well established that helium formed in stainless steel by various (n,α) processes has a pronounced effect on its mechanical and dimensional properties. The anomalous production of helium in nickel-based alloys is known to take place via the two-step process: 58Ni(n,γ)59Ni(n,α)56Fe. For thermal neutrons, the 59Ni(n,α)56Fe cross section used to calculate the helium production differs strongly from the value obtained by the direct measurements of this cross section. In this Note, this discrepancy is discussed, and a value of 12.5 ± 1 b based on direct measurements is recommended for future calculations. For fast neutrons, the contribution due to the two-step process has been ignored in the past. It is demonstrated that this contribution is substantial, and it gains in importance as the neutron fluence increases. It is further shown that the usual practice to relate helium production data to thermal- and fast-neutron fluence is inadequate. The details of the neutron spectrum and the cross section are necessary to reliably predict the helium production rate.