ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Edward L. H. Tang
Nuclear Science and Engineering | Volume 69 | Number 1 | January 1979 | Pages 65-75
Technical Paper | doi.org/10.13182/NSE79-A21286
Articles are hosted by Taylor and Francis Online.
The rod-drop experiment has been studied for the purpose of predicting reactor resonance power level. A simplified model, referred to here as the “collective model,” is introduced for experimental analysis of the rod-drop transient response. The mathematical description of this model is formulated by describing the experimentally observed oscillatory response by an overall damping factor and an overall oscillatory frequency. Based on this model, it is found that the overall damping factor is approximately a linear function of the reactor power. Accordingly, we propose an experimental procedure, the method of least-squares approach, which provides an exponential approach to the resonance power level as a function of the number of rod drops. It is shown that the accuracy of measurement in the rod-drop experiment greatly affects this technique for core dynamic analysis. The present results show that for an experiment of negligible experimental error, only two or three rod drops are needed to predict the resonance power level up to an accuracy of 0.2%, while for an experiment of ±5% in error, it requires four to five rod drops to reach an accuracy of 0.8%.