ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. M. Holford, R. V. Osborne
Nuclear Science and Engineering | Volume 69 | Number 1 | January 1979 | Pages 14-21
Technical Paper | doi.org/10.13182/NSE79-A21280
Articles are hosted by Taylor and Francis Online.
In heavy water reactors, tritium is formed by the (n,γ) reaction on deuterium and by the (n,p) reaction on the tritium decay product 3He. The relative contribution of the latter reaction depends on the retention time of 3He in the heavy water system. If the retention is at least 10 days, then, with an effective neutron flux of 1014 cm−2·s−1, the activity of tritium produced by the 3He reaction is at least 4% of that produced by the deuterium reaction after operation for 5 yr and is at least 22% after 30 yr. Complete retention of the 3He would result in similar contributions from both reactions to the concentration of tritium in a heavy water system after 30 yr.