ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
ANS Congressional Fellowship program seeks 2027 applicants
Earlier this week, ANS opened the application process for the 2027 Glenn T. Seaborg Congressional Science and Engineering Fellowship, offering ANS members an opportunity to contribute directly to federal policymaking in Washington, D.C. Applications are due June 6.
G. C. Pomraning
Nuclear Science and Engineering | Volume 69 | Number 1 | January 1979 | Pages 6-13
Technical Paper | doi.org/10.13182/NSE79-A21279
Articles are hosted by Taylor and Francis Online.
Analytic estimates are given for the angular dependence of the neutron (or photon) flux in toroidal geometry arising from the toroidal character of the configuration. The model used in the analysis is the one-group homogeneous diffusion model The toroidal angular effects in the local flux are shown to be first order in ϵ, the inverse aspect ratio, whereas angular effects occurring in spatial integrals of the flux are found to be of order ϵ2. An analytic expression for the Green's function for diffusion equation in toroidal geometry is given correct to order ϵ2, and typical numerical results are shown. A transformation of the scalar flux is presented that removes all angular dependence from the streaming term in the diffusion equation and removes the angular dependence from the absorption term correct to order ϵ. The overall conclusion reached is that angular toroidal effects are not simply characterized.