ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
G. C. Pomraning
Nuclear Science and Engineering | Volume 69 | Number 1 | January 1979 | Pages 6-13
Technical Paper | doi.org/10.13182/NSE79-A21279
Articles are hosted by Taylor and Francis Online.
Analytic estimates are given for the angular dependence of the neutron (or photon) flux in toroidal geometry arising from the toroidal character of the configuration. The model used in the analysis is the one-group homogeneous diffusion model The toroidal angular effects in the local flux are shown to be first order in ϵ, the inverse aspect ratio, whereas angular effects occurring in spatial integrals of the flux are found to be of order ϵ2. An analytic expression for the Green's function for diffusion equation in toroidal geometry is given correct to order ϵ2, and typical numerical results are shown. A transformation of the scalar flux is presented that removes all angular dependence from the streaming term in the diffusion equation and removes the angular dependence from the absorption term correct to order ϵ. The overall conclusion reached is that angular toroidal effects are not simply characterized.