ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
S. Rauck, R. Sanchez, I. Zmijarevic, M. Nobile
Nuclear Science and Engineering | Volume 135 | Number 1 | May 2000 | Pages 73-83
Technical Paper | doi.org/10.13182/NSE00-A2126
Articles are hosted by Taylor and Francis Online.
Through the introduction of appropriate boundary conditions, the use of multigroup albedos permits one to concentrate the numerical effort of solving the transport equation in only the domain of interest, thus reducing computational requirements. Multigroup albedos that are representative of an external medium can be calculated via independent transport calculations and collapsed for use in a few-group three-dimensional transport calculation. The multigroup albedo method is developed and applied to the calculation of the Orphée research reactor. Numerical comparisons between full-core two-dimensional transport calculations and two-dimensional transport calculations performed with multigroup albedos show why the method is interesting. The axial power distribution obtained from a three-dimensional transport calculation with multigroup albedos precisely matches measured experimental values, while results from three-dimensional full-core diffusion calculations give unacceptable errors.