ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Rauck, R. Sanchez, I. Zmijarevic, M. Nobile
Nuclear Science and Engineering | Volume 135 | Number 1 | May 2000 | Pages 73-83
Technical Paper | doi.org/10.13182/NSE00-A2126
Articles are hosted by Taylor and Francis Online.
Through the introduction of appropriate boundary conditions, the use of multigroup albedos permits one to concentrate the numerical effort of solving the transport equation in only the domain of interest, thus reducing computational requirements. Multigroup albedos that are representative of an external medium can be calculated via independent transport calculations and collapsed for use in a few-group three-dimensional transport calculation. The multigroup albedo method is developed and applied to the calculation of the Orphée research reactor. Numerical comparisons between full-core two-dimensional transport calculations and two-dimensional transport calculations performed with multigroup albedos show why the method is interesting. The axial power distribution obtained from a three-dimensional transport calculation with multigroup albedos precisely matches measured experimental values, while results from three-dimensional full-core diffusion calculations give unacceptable errors.