ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
S. Rauck, R. Sanchez, I. Zmijarevic, M. Nobile
Nuclear Science and Engineering | Volume 135 | Number 1 | May 2000 | Pages 73-83
Technical Paper | doi.org/10.13182/NSE00-A2126
Articles are hosted by Taylor and Francis Online.
Through the introduction of appropriate boundary conditions, the use of multigroup albedos permits one to concentrate the numerical effort of solving the transport equation in only the domain of interest, thus reducing computational requirements. Multigroup albedos that are representative of an external medium can be calculated via independent transport calculations and collapsed for use in a few-group three-dimensional transport calculation. The multigroup albedo method is developed and applied to the calculation of the Orphée research reactor. Numerical comparisons between full-core two-dimensional transport calculations and two-dimensional transport calculations performed with multigroup albedos show why the method is interesting. The axial power distribution obtained from a three-dimensional transport calculation with multigroup albedos precisely matches measured experimental values, while results from three-dimensional full-core diffusion calculations give unacceptable errors.