ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
S. Rauck, R. Sanchez, I. Zmijarevic, M. Nobile
Nuclear Science and Engineering | Volume 135 | Number 1 | May 2000 | Pages 73-83
Technical Paper | doi.org/10.13182/NSE00-A2126
Articles are hosted by Taylor and Francis Online.
Through the introduction of appropriate boundary conditions, the use of multigroup albedos permits one to concentrate the numerical effort of solving the transport equation in only the domain of interest, thus reducing computational requirements. Multigroup albedos that are representative of an external medium can be calculated via independent transport calculations and collapsed for use in a few-group three-dimensional transport calculation. The multigroup albedo method is developed and applied to the calculation of the Orphée research reactor. Numerical comparisons between full-core two-dimensional transport calculations and two-dimensional transport calculations performed with multigroup albedos show why the method is interesting. The axial power distribution obtained from a three-dimensional transport calculation with multigroup albedos precisely matches measured experimental values, while results from three-dimensional full-core diffusion calculations give unacceptable errors.