ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Lung Kwang Pan, Cheng Si Tsao
Nuclear Science and Engineering | Volume 135 | Number 1 | May 2000 | Pages 64-72
Technical Paper | doi.org/10.13182/NSE00-A2125
Articles are hosted by Taylor and Francis Online.
This work verifies the neutron flux for a modified zero-power-reactor facility using neutron activation. Ten foils are activated and counted to illustrate the precise neutron spectrum at a particular location inside the reactor core through the computerized software Spectrum Analysis by Neutron Detector-II (SAND-II). In addition, neutron spectra derived from 11 different locations are compared with the computational results from the WIMS reactor analytical software, respectively, and then the neutron distribution with various energy groups inside the reactor core is rearranged. A quantified index, AT, is also introduced to compare the experimental and computational results. In this work, the ATs are evaluated as 2.28 ± 0.48, which implies a slight discrepancy between the computational and experimental results. Moreover, a softer neutron spectrum evaluated by the WIMS calculation is verified by further examining the experimental data. Recommendations on how to apply the WIMS calculations are also offered.