ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
A. A. Harms, A. L. Babb
Nuclear Science and Engineering | Volume 43 | Number 1 | January 1971 | Pages 66-73
Technical Paper | doi.org/10.13182/NSE71-A21247
Articles are hosted by Taylor and Francis Online.
This paper presents a method of analysis associated with the specification of optimal energy-group and space-interval structures in neutron diffusion calculations. Initially, an extremal algorithm is formulated to minimize the integrated error between two arbitrary piecewise-constant functions of two variables. The minimization is attained by steepest descent in piecewise-constant, non-convex, multidimensional phase-space. It is found that given an initial reference neutron diffusion calculation, the extremal algorithm may be effectively used to specify a reduced energy-group structure and/or a reduced space-interval structure such that the error in the effective multiplication constant is minimized. The extremalnodal analysis discussed herein appears to be particularly useful for repetitious nuclear reactor calculations which seek to maximize numerical accuracy and minimize computer execution time.