ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
K. B. Lee, Richard Madey
Nuclear Science and Engineering | Volume 43 | Number 1 | January 1971 | Pages 27-31
Technical Paper | doi.org/10.13182/NSE71-A21242
Articles are hosted by Taylor and Francis Online.
Experimental data of Cantelow on the time-dependent transmission of 133Xe in air flowing steadily through fixed beds packed with activated charcoal adsorbent are reinterpreted on the basis of a dispersion model in terms of a dimensionless dispersion number and an effective adsorption capacity for the gas-adsorbent system. The transmission is the ratio of the concentration at the outlet of the adsorber bed to the concentration at the inlet to the bed. The dispersion model provides an alternative interpretation to the theoretical plate model for the transport of a gas through a packed bed. For the range of dimensionless dispersion numbers represented by the data, the two models lead to the same values for the effective adsorption capacity. The reciprocal of the dimensionless dispersion number is equal to twice the theoretical plate number.