ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
K. B. Lee, Richard Madey
Nuclear Science and Engineering | Volume 43 | Number 1 | January 1971 | Pages 27-31
Technical Paper | doi.org/10.13182/NSE71-A21242
Articles are hosted by Taylor and Francis Online.
Experimental data of Cantelow on the time-dependent transmission of 133Xe in air flowing steadily through fixed beds packed with activated charcoal adsorbent are reinterpreted on the basis of a dispersion model in terms of a dimensionless dispersion number and an effective adsorption capacity for the gas-adsorbent system. The transmission is the ratio of the concentration at the outlet of the adsorber bed to the concentration at the inlet to the bed. The dispersion model provides an alternative interpretation to the theoretical plate model for the transport of a gas through a packed bed. For the range of dimensionless dispersion numbers represented by the data, the two models lead to the same values for the effective adsorption capacity. The reciprocal of the dimensionless dispersion number is equal to twice the theoretical plate number.