ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Calvin E. Burgart, P. N. Stevens
Nuclear Science and Engineering | Volume 42 | Number 3 | December 1970 | Pages 306-323
Technical Paper | doi.org/10.13182/NSE70-A21220
Articles are hosted by Taylor and Francis Online.
The application of the Monte Carlo method to the solution of deep-penetration radiation transport problems requires the use of “importance sampling.” A systematic approach to obtaining an importance function is to calculate the solution of the inhomogeneous adjoint transport equation (using the Monte Carlo estimator of the answer of interest as the source term) and to use this adjoint flux (or value function) as the importance function. The adjoint flux is calculated for simplified geometries using one-dimensional discrete ordinates methods. In three-dimensional deep-penetration Monte Carlo calculations the alteration of both the transport and the collision kernel is desirable. The exponential transform is quite useful for altering the transport kernel. However, selection from the altered collision kernel is much more difficult. The approach taken here is to introduce an angular grid with 30 discrete directions fixed in the laboratory coordinate system, along which particles are required to travel. After determining appropriate scattering probabilities and values of the importance function for each of the discrete directions, the selection of the outgoing direction and, hence, energy from the resulting discrete distribution is easily performed. The effects of the discrete angular grid and the capability of angular-biased Monte Carlo have been investigated for neutron transport by comparison with standard Monte Carlo and discrete ordinates calculations, experiment, and exact analytic solutions for several configurations. In all cases the discrete grid alone (no angular biasing) was observed to have no significant effect on the results. Monte Carlo calculations were performed utilizing the exponential transform, nonleakage, source energy biasing, Russian roulette, and splitting plus the angular biasing. The results of these calculations illustrate the general usefulness of this discrete grid approach to angular biasing in several ways. First, meaningful results were obtained with angular biasing at much greater distances from the source than were practically possible with the earlier biasing techniques. The answers, variances, and computer times were all on the same order or better than those obtained with the earlier biasing techniques. Finally, this method utilizing the discrete grid to incorporate angular biasing requires very little human interaction once the adjoint configuration is selected.