ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
G. Kistner and J. T. Mihalczo
Nuclear Science and Engineering | Volume 35 | Number 1 | January 1969 | Pages 27-44
Technical Paper | doi.org/10.13182/NSE69-A21112
Articles are hosted by Taylor and Francis Online.
A series of static critical experiments has been performed on an accurate mockup of the SORA Reactor. SORA is a proposed NaK cooled, repetitively pulsed fast reactor which would be used as a high-intensity neutron source for time-of-flight experiments. The reactivity of this reactor is varied by a movable reflector. Those parameters which are related to the kinetics of the reactor have been investigated thoroughly in the critical experiments. They have been measured for both beryllium and iron reflectors of several sizes and for various core and fixed reflector configurations. The total reactivity of the movable reflectors varied from $3.7 for a 11.0-cm-wide iron reflector to $12 for a 26.2-cm-wide beryllium reflector. The reactivity of the movable reflector as a function of its position has been shown to have a parabolic dependence on position characterized by the parameter αx, which varied from 4 to 9.9¢/cm2. The prompt-neutron time decay is described by a fast decay constant which varied between 0.30 and 0.55/µ sec and a slow decay constant which varied between 0.05 and 0.10/µ sec. The critical mass for the various experiments was between 50.3 and 57.3 kg of uranium enriched to 93.2 wt% 235U. Using space-independent neutron kinetics with one delayed-neutron group, it has been shown that with a 24-cm-high × 7-cm-thick × 21-cm-wide beryllium reflector the assembly will produce 100 pulses/sec ∼50-µsec wide at half-maximum power with a peak-to-average power ratio of ∼180.