ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
T. D. Beynon, I. S. Grant
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 368-379
Technical Paper | doi.org/10.13182/NSE65-A21074
Articles are hosted by Taylor and Francis Online.
Double P/0 diffusion theory is shown to be a sufficiently accurate representation for calculating resonance absorption and its temperature coefficient. The theory is formulated to allow for non-uniform temperature distributions and spatial variation of neutron cross sections. It is applied to uranium rods in graphite-moderated reactors, assuming a parabolic fuel-temperature distribution. Volume and surface temperature coefficients for absorption are defined. The energy distributions of these coefficients in strongly absorbing resonances are shown to differ Significantly. It is found that the total volume coefficient exceeds the total surface coefficient by 15% at normal operating temperatures. At higher temperatures the total volume coefficient is larger by 5%. Rowlands' formula for the effective uniform temperature is shown to be reliable for calculating the resonance integral and the volume temperature coefficient, but not for the surface coefficient.