ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
W. Baer, J. Hardy, Jr., D. Klein, J. J. Volpe, B. L. Palowitch and F. S. Frantz, Jr.
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 361-367
Technical Paper | doi.org/10.13182/NSE65-A21073
Articles are hosted by Taylor and Francis Online.
Parameter measurements in a 1.3% enriched UO2 lattice with H:U = 0.42 have been performed. These measurements are an extension of an experimental program in the TRX critical facility of the Bettis Atomic Power Laboratory. Earlier measurements were made for a wide range of water-to-uranium (H2O:U) volume ratios (1:1 to 8:1) using 4-ft (1.2-m)-high slightly enriched, 0.387-in. (0.98-cm)-diam uranium metal or oxide fuel rods clad with aluminum. The new data have been compared with current analytic techniques, using both P-1 and P-3 multigroup analysis in the epithermal neutron energy range and Monte Carlo multigroup methods for thermal neutrons. This extremely undermoderated lattice provides a very stringent test for both the computational methods and the neutron cross sections used. The quantities measured were: the ratio of epithermal-to-thermal radiative captures in U238 (ρ28); the ratio of captures in U238 to fissions in U235 (the modified conversion ratio, CR*); the ratio of U238 fisions to U235 fissions (δ28); and the ratio of epithermal-to-thermal U235 fissions (δ25). In addition, activations were obtained with thermal-neutron detectors of widely different spectral response. The results indicate that the calculational methods predict the parameters very well, except for δ28. The discrepancy in δ28 may be due to inadequate U238 inelastic scattering cross sections, but this conclusion requires additional study. Monte Carlo calculations of thermal-neutron detector activations show that use of either the Nelkin or Koppel kernel gives results that agree with the data.