ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
W. Baer, J. Hardy, Jr., D. Klein, J. J. Volpe, B. L. Palowitch and F. S. Frantz, Jr.
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 361-367
Technical Paper | doi.org/10.13182/NSE65-A21073
Articles are hosted by Taylor and Francis Online.
Parameter measurements in a 1.3% enriched UO2 lattice with H:U = 0.42 have been performed. These measurements are an extension of an experimental program in the TRX critical facility of the Bettis Atomic Power Laboratory. Earlier measurements were made for a wide range of water-to-uranium (H2O:U) volume ratios (1:1 to 8:1) using 4-ft (1.2-m)-high slightly enriched, 0.387-in. (0.98-cm)-diam uranium metal or oxide fuel rods clad with aluminum. The new data have been compared with current analytic techniques, using both P-1 and P-3 multigroup analysis in the epithermal neutron energy range and Monte Carlo multigroup methods for thermal neutrons. This extremely undermoderated lattice provides a very stringent test for both the computational methods and the neutron cross sections used. The quantities measured were: the ratio of epithermal-to-thermal radiative captures in U238 (ρ28); the ratio of captures in U238 to fissions in U235 (the modified conversion ratio, CR*); the ratio of U238 fisions to U235 fissions (δ28); and the ratio of epithermal-to-thermal U235 fissions (δ25). In addition, activations were obtained with thermal-neutron detectors of widely different spectral response. The results indicate that the calculational methods predict the parameters very well, except for δ28. The discrepancy in δ28 may be due to inadequate U238 inelastic scattering cross sections, but this conclusion requires additional study. Monte Carlo calculations of thermal-neutron detector activations show that use of either the Nelkin or Koppel kernel gives results that agree with the data.