ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Robert B. Oswald, Jr., and Chihiro Kikuchi
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 354-360
Technical Paper | doi.org/10.13182/NSE65-A21072
Articles are hosted by Taylor and Francis Online.
The production of defects by thermal neutrons in CdS results from the recoil of an energetic 114Cd nucleus. The recoil results from prompt emission of 9 MeV of gamma energy following thermal-neutron capture by 113Cd through the nuclear reaction: 113Cd + nth → (114Cd) → 114Cd + γ. The changes in the optical and electrical properties of CdS were measured to determine the effect of such recoils. A recombination center for the 7200A emission is produced and both the 4880A emission and edge emission are reduced. In addition, the conductivity of initially conducting CdS crystals is decreased by many orders of magnitude. The temperature dependence of the conductivity of thermal-neutron irradiated crystals indicates the production of a state about 0.5 eV below the conduction band.