ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Firooz Rufeh, Donald R. Olander and Thomas H. Pigford
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 335-338
Technical Paper | doi.org/10.13182/NSE65-A21069
Articles are hosted by Taylor and Francis Online.
A high-pressure furnace that operates up to 2000°C in the pressure range of 100 atm to 10−5 torr was designed and constructed to saturate UO2 powder of 4-µm average particle size with 4He. The powder was then dissolved in a fused salt in an induction chamber. The released 4He was mixed with a known quantity of 3He, and the mixture was analyzed with a mass spectrometer to determine the 4He: 3He ratio, hence the original mass of 4He in the sample. The solubility of He in UO2 at 1200 and 1300°C was found to be 6.71 × 10−4 and 3.23 × 10−4 cm3 (STP)/(g atm), respectively. It was also found that the He-UO2 system obeys Henry's law. From a plot of He concentration as a function of time, the diffusion coefficient at 1200 °C was estimated to be 1.5 × 10−13 cm2/sec.