ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
J. F. Thorpe
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 329-334
Technical Paper | doi.org/10.13182/NSE65-A21068
Articles are hosted by Taylor and Francis Online.
An accurate heat-transfer analysis of reactor fuel elements requires an accounting of the axial heat-conduction effects. The exact treatment requires the solution of a boundary-value problem involving partial differential equations. In this paper, an approximate method is developed for determining the axial and transverse heat-flux distributions in reactor-fuel elements. The method is analogous to the Karman-Pohlhausen method of boundary-layer theory. When the results of the approximate method are compared with those of known exact solutions, the agreement is found to be excellent. Two examples are given in which the approximate method gives values that agree with the exact solutions to within about 2%.