ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. F. Thorpe
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 329-334
Technical Paper | doi.org/10.13182/NSE65-A21068
Articles are hosted by Taylor and Francis Online.
An accurate heat-transfer analysis of reactor fuel elements requires an accounting of the axial heat-conduction effects. The exact treatment requires the solution of a boundary-value problem involving partial differential equations. In this paper, an approximate method is developed for determining the axial and transverse heat-flux distributions in reactor-fuel elements. The method is analogous to the Karman-Pohlhausen method of boundary-layer theory. When the results of the approximate method are compared with those of known exact solutions, the agreement is found to be excellent. Two examples are given in which the approximate method gives values that agree with the exact solutions to within about 2%.