ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
T. Auerbach, T. Gozani and P. Schmid
Nuclear Science and Engineering | Volume 21 | Number 2 | February 1965 | Pages 186-193
Technical Paper | doi.org/10.13182/NSE65-A21042
Articles are hosted by Taylor and Francis Online.
The conventional method of determining excess reactivity and control-rod worth by summing reactivity decrements in a heterogeneous poisoning experiment may give rise to serious errors because of the neglect of interference effects between rods and poison. In this paper, it is suggested that interference may be accounted for by the simple assumption that it affects only the total control-rod worth but not the shape of the normalized reactivity versus height curve. It is shown that this assumption allows results to be extrapolated back to the rod worth in the unpoisoned core. The method is demonstrated in two poisoning sequences carried out in the Swiss swimming-pool reactor SAPHIR. The values obtained for excess reactivity and control-rod worth agree well with each other and with a direct measurement. It is shown that the normalized regulating curve is indeed independent of poison and that the method of summing reactivity decrements is seriously in error when applied to the second poisoning sequence.