ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Hongyu Zhou, Xinfu Wang, Chao Wang, Ming Hua, Guangshun Huang, Guoying Fan, Ting Lu, Siqing Bartel
Nuclear Science and Engineering | Volume 134 | Number 1 | January 2000 | Pages 106-113
Technical Note | doi.org/10.13182/NSE00-A2104
Articles are hosted by Taylor and Francis Online.
The gamma radiation in the interaction of 14.9-MeV neutrons with a natural lead sample is investigated by the total gamma radiation measurement technique (TGRM). Forty-nine prompt gamma lines and 8 delayed gamma lines, which come from (n,n') and (n,2n) reactions of 206Pb, 207Pb, and 208Pb, are identified, and their differential production cross sections at 55, 90, and 140 deg are determined. Six mixed gamma-ray peaks are separated, and the production data of the prompt and delayed components are given separately. The production cross sections of three isomeric states (1013.7 keV, (13/2)+, 5.5 ms in 205mPb; 2200.2 keV, 7-, 124s in 206mPb; and 1633.3 keV, (13/2)+, 0.81s in 207mPb) are accurately determined. They are in good agreement with some recent experimental and theoretical results. This is the most successful example of applying TGRM in an (n,x) experimental study following after the aluminum study.