ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Xuemei Zhang, Zemin Chen, Yingtang Chen, Guoyou Tang, Guohui Zhang, Jinxiang Chen, Yu. M. Gledenov, G. Khuukhenkhuu
Nuclear Science and Engineering | Volume 134 | Number 1 | January 2000 | Pages 89-96
Technical Paper | doi.org/10.13182/NSE00-A2102
Articles are hosted by Taylor and Francis Online.
Cross sections, angular distributions, and double-differential cross sections were measured for 39K(n,)36Cl reactions at En = 4.5, 5.5, and 6.5 MeV and for 40Ca(n,)37Ar reactions at En = 5.0 to 6.0 MeV, using a twin-gridded ionization chamber, and the experimental data were analyzed with the UNF code. The results indicate that the optical model parameters employed in the calculation are appropriate in the energy region. The energy level densities used in our calculations are a little different from the findings of Gilbert and Cameron, and the pair corrections of some nuclei are much smaller than what was determined by them. The experiment and model calculation results indicate that in the energy region below 7 MeV, the compound nuclear mechanism is predominant; at 6.5 MeV, the preequilibrium emission is ~12%.