ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Xuemei Zhang, Zemin Chen, Yingtang Chen, Guoyou Tang, Guohui Zhang, Jinxiang Chen, Yu. M. Gledenov, G. Khuukhenkhuu
Nuclear Science and Engineering | Volume 134 | Number 1 | January 2000 | Pages 89-96
Technical Paper | doi.org/10.13182/NSE00-A2102
Articles are hosted by Taylor and Francis Online.
Cross sections, angular distributions, and double-differential cross sections were measured for 39K(n,)36Cl reactions at En = 4.5, 5.5, and 6.5 MeV and for 40Ca(n,)37Ar reactions at En = 5.0 to 6.0 MeV, using a twin-gridded ionization chamber, and the experimental data were analyzed with the UNF code. The results indicate that the optical model parameters employed in the calculation are appropriate in the energy region. The energy level densities used in our calculations are a little different from the findings of Gilbert and Cameron, and the pair corrections of some nuclei are much smaller than what was determined by them. The experiment and model calculation results indicate that in the energy region below 7 MeV, the compound nuclear mechanism is predominant; at 6.5 MeV, the preequilibrium emission is ~12%.