ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
G. Leinweber, J. Burke, C. R. Lubitz, H. D. Knox, N. J. Drindak, R. C. Block, R. E. Slovacek, C. J. Werner, N. C. Francis, Y. Danon, B. E. Moretti
Nuclear Science and Engineering | Volume 134 | Number 1 | January 2000 | Pages 50-67
Technical Paper | doi.org/10.13182/NSE00-A2099
Articles are hosted by Taylor and Francis Online.
Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Institute LINAC using metallic zirconium samples. The capture measurement was made at the 25-m flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at the 25-m flight station with a 6Li glass scintillation detector. Resonance parameters were determined by a combined analysis of all 11 data sets (4 capture and 7 transmission) using the least-squares multilevel R-matrix code REFIT.The present measurements were undertaken to resolve discrepancies between common usage (ENDF/B-VI) and the recent measurements of Salah et al. for the 300-eV zirconium doublet. The present measurements support the Salah et al. conclusions. Specifically, the results confirm the assignment of J = 3 for the 91Zr 292.5-eV resonance and include all significant resonances up to 2.5 keV. The zirconium resonance parameters and n, determined in the present measurement, are compared with the ENDF/B-VI parameters.