ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Richard E. Kaiser, William R. Kimel
Nuclear Science and Engineering | Volume 20 | Number 4 | December 1964 | Pages 468-475
Technical Paper | doi.org/10.13182/NSE64-A20989
Articles are hosted by Taylor and Francis Online.
Several methods are available for the determination of thermal diffusion length. In general, those based on one-group diffusion theory are subject to the assumption of a particular source boundary condition. Errors introduced by the assumption of such boundary conditions usually result in incorrect prediction of the relative harmonic content of the thermal flux at different elevations in the pile. The effect of these errors on diffusion-length determination is to cause inconsistency in the results as additional data points taken close to the source are included. A method is presented whereby the constants Amn in the one-group thermal-flux equation are determined experimentally and used in the determination of diffusion length. This method is then compared with other methods using one-group and age-diffusion theory with respect to the consistency of results obtained.