ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
André Mackel
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 339-349
Technical Paper | doi.org/10.13182/NSE65-A20938
Articles are hosted by Taylor and Francis Online.
Reflection and transmission of monoenergetical particles with a known ingoing distribution by a strongly absorbing slab is studied from the numerical standpoint. Various approximation methods based on known theoretical solutions are presented: in section III we propose an approximation based on Chandrasekhar X and Y functions; in section IV we obtain the reflection and transmission by using a variational technique, and we show that a successive-collision technique gives identical results; and in section V we propose a diffusion-like approximation, with adjusted coefficients, of the form The first approximation gives good results for low c values; the second one, for high c values. The diffusion-like approximation, however, is accurate to more than 2% for all values of c between 0.1 and 0.9. Moreover it is far easier to compute than any of the former ones.