ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
H. O. Menlove and W. P. Poenitz
Nuclear Science and Engineering | Volume 33 | Number 1 | July 1968 | Pages 24-30
Technical Paper | doi.org/10.13182/NSE68-2
Articles are hosted by Taylor and Francis Online.
The capture cross section of 238U has been measured absolutely at a neutron energy of 30 keV using kinematically collimated neutrons from the 7Li(p, n) 7Be reaction near threshold. Activation techniques were used to determine both the number of capture events and the number of neutrons that occurred during the irradiation. The result of the 238U capture cross section measurement is 479 ± 14 mb at 30 keV. In addition, the shape of the 238 U capture cross section has been measured for neutron energies from 25 to 500 keV using neutrons from the 7Li(p, n)7 Be reaction. The capture reactions in the 238 U target were detected using a large liquid scintillator tank and time-of-flight techniques. The relative neutron flux was measured using a flat response neutron detector. The cross-section shape measurement was normalized to the present absolute measurement at 30 keV. The present measurement has been compared with several measured values, theoretical calculations, and compiled values of the 238U capture cross section as given by other authors.