ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Vladimir A. Babenko, Laszlo L. Jenkovszky, Volodymyr A. Romanov, Volodymyr N. Pavlovych, Oleg Ya. Vertsimakha
Nuclear Science and Engineering | Volume 133 | Number 3 | November 1999 | Pages 301-313
Technical Paper | doi.org/10.13182/NSE99-A2090
Articles are hosted by Taylor and Francis Online.
The results are presented of an investigation of the multiplying properties of lava-formed fuel-containing masses (LFCM); also, the possibility of developing ignition and dynamics of a self-sustaining chain reaction (SCR) in the LFCM of the destroyed Unit 4 of the Chernobyl nuclear power plant (the so-called Shelter) is discussed. The SCALE 4.3 computer code was used to calculate the multiplication factor, the neutron energy spectrum, the spatial distribution of the neutron flux density, etc., as functions of the water content in the LFCM for different system models. These results can help to determine the optimum placement of detectors in the rooms under the reactor. In addition, the dynamic of an SCR under the hypothetical condition that the filling of the LFCM by water leads to an excess multiplication factor over unity was considered. Such a treatment was performed for a simple model that takes into account the evaporation of water and an increase in temperature due to an energy release in the LFCM. The different modes of the LFCM behavior depending on the velocity of water filling are discussed.