ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Henry Lichtenstein
Nuclear Science and Engineering | Volume 133 | Number 3 | November 1999 | Pages 258-268
Technical Paper | doi.org/10.13182/NSE99-A2086
Articles are hosted by Taylor and Francis Online.
An adaptive reduced-source approach is utilized for a Monte Carlo transport solution for the one-speed finite slab problem in [x,] geometry. Although a solution for the underlying problem has been available to arbitrary precision for some time, the purpose here is to demonstrate how the convergence afforded by traditional (nonadaptive) Monte Carlo can be improved significantly, without compromising its precision. It is demonstrated that the reduced-source Monte Carlo technique obtains multiple-orders-of-magnitude improvement over traditional Monte Carlo convergence for the two-dimensional transport problem treated. The goal is that ongoing research will obtain exponential convergence for practical applications that are not tractable with methodology currently available.