ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
Wayne K. Lehto, John M. Carpenter
Nuclear Science and Engineering | Volume 33 | Number 2 | August 1968 | Pages 225-237
Technical Paper | doi.org/10.13182/NSE68-A20660
Articles are hosted by Taylor and Francis Online.
Fission rate fluctuations at low power in a reactor with a large fission-product inventory have been observed in the pool-type Ford Nuclear Reactor. A gaseous Cerenkov detector was used to sense the high-energy, prompt-fission gamma rays in the presence of a fission-product gamma field of 105 to 106 R/h. The ratio β/l is determined from the cross power spectral density of the fluctuations in the signals from two of these detectors. Both this spectrum and the power spectral density of the output of a single detector show a large low-frequency component. This is attributed to moderator temperature fluctuations present when the fission-product decay heat is removed by natural circulation of the coolant. The temperature fluctuations as measured with a short-time-constant thermocouple are shown to be correlated to those in the fission rate. The detector is described, as well as a basis for calculating its performance and efficiency. A theory of the gamma noise experiment that reveals the effects of the detector on the measured spectrum is presented.