ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
S. P. Congdon, M. R. Mendelson
Nuclear Science and Engineering | Volume 33 | Number 2 | August 1968 | Pages 151-161
Technical Paper | doi.org/10.13182/NSE68-A20653
Articles are hosted by Taylor and Francis Online.
The derivation of blackness boundary conditions is reviewed and generalized into a standard matrix formalism that is valid for any order PN approximation. It is then shown that for a finite slab effective diffusion and absorption matrices can be found which reproduce blackness boundary conditions at the interfaces. In the continuous or infinitely many mesh point description of the black region, the analysis leads to infinite series expressions for the equivalent matrices, which have been evaluated explicitly by means of the Caley-Hamilton theorem for the case of the P 3 approximation. Equivalent matrices have also been derived for two- and three-mesh-point descriptions of the black region. Numerical calculations for three model problems indicate that P3 blackness theory is a great improvement over conventional P3 theory and is roughly equivalent to P5 theory in the prediction of both the exterior scalar flux and the absorption rate in the black region.