ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
D. Stuenkel, James Paul Holloway, G. F. Knoll
Nuclear Science and Engineering | Volume 132 | Number 3 | July 1999 | Pages 261-272
Technical Paper | doi.org/10.13182/NSE99-A2062
Articles are hosted by Taylor and Francis Online.
A modified truncated singular value decomposition (MTSVD) is employed to unfold proton recoil pulse-height spectra into neutron energy spectra, using experimentally measured response functions. To illustrate the method, spectra from 252Cf and 239PuBe sources are unfolded. The relative error, defined in terms of the 1-norm, using the MTSVD method is found to be approximately half that of the truncated singular value decomposition for the 252Cf spectra. Relative errors for the 239PuBe spectra were approximately equal for the two methods. The method is limited by the precision of the measurement of the response functions and the pulse-height spectra. More precise measurements would allow the use of larger truncation parameters and are likely to result in more accurate reconstructed neutron spectra. The MTSVD method is particularly suited to real-time on-line unfolding of spectra.