ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
J. Michael Doster, Peter K. Kendall
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 105-117
Technical Paper | doi.org/10.13182/NSE99-A2052
Articles are hosted by Taylor and Francis Online.
Natural circulation is important for the long-term cooling of light water reactors in off-normal conditions, and it is therefore important to understand the numerical behavior of reactor safety codes used to simulate flows under those conditions. While the methods and models in these codes have been studied in some detail, the impact of the weight force term on the numerical behavior has been largely ignored. The dynamic and numerical stability of the one-dimensional, single-phase-flow equations are examined for natural-circulation problems. It is shown that the presence of the weight force in the momentum equation results in a minimum value of the frictional loss coefficient for the equations to be stable. It is further shown that the numerical solution is unstable unless this dynamic stability limit is satisfied. The stability limits developed are verified by numerical solution of the single-phase-flow equations under natural-circulation conditions.