ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
J. Michael Doster, Peter K. Kendall
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 105-117
Technical Paper | doi.org/10.13182/NSE99-A2052
Articles are hosted by Taylor and Francis Online.
Natural circulation is important for the long-term cooling of light water reactors in off-normal conditions, and it is therefore important to understand the numerical behavior of reactor safety codes used to simulate flows under those conditions. While the methods and models in these codes have been studied in some detail, the impact of the weight force term on the numerical behavior has been largely ignored. The dynamic and numerical stability of the one-dimensional, single-phase-flow equations are examined for natural-circulation problems. It is shown that the presence of the weight force in the momentum equation results in a minimum value of the frictional loss coefficient for the equations to be stable. It is further shown that the numerical solution is unstable unless this dynamic stability limit is satisfied. The stability limits developed are verified by numerical solution of the single-phase-flow equations under natural-circulation conditions.