ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
S. C. Mo, K. O. Ott
Nuclear Science and Engineering | Volume 95 | Number 3 | March 1987 | Pages 214-224
Technical Paper | doi.org/10.13182/NSE87-A20451
Articles are hosted by Taylor and Francis Online.
Activation measurements in fast neutron spectra, using detector foils in which the neutron mean-free-path in a resonance is small compared to the foil thickness, are revised by detailed space and energy self-shielding corrections. The experimental data are then comparable with the reaction rate density calculations. The self-shielding factors of individual Doppler-broadened resonances have been calculated with the integral transport theory. A multiple collision technique was required to treat resonance scattering inside the foil because of the small mean-free-path. The foil correction factor at each experimental position is obtained by combining the self-shielding factors of individual resonances with the calculated multigroup reaction rates at the foil locations. This gives a space-dependent foil correction factor for regions with spatially varying spectra. Applications of the foil correction technique to the integral reaction rate measurements of 197Au, 55Mn, 186W, and 232Th in a fast reactor blanket mockup are presented.