ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
S. H. Chan, H. H. Tseng
Nuclear Science and Engineering | Volume 71 | Number 2 | August 1979 | Pages 215-227
Technical Note | doi.org/10.13182/NSE79-A20415
Articles are hosted by Taylor and Francis Online.
In analyzing radiant energy exchange between fuel and coolant in a reactor, it is necessary to know the reflection, absorption, and emission characteristics of the fuel and its interface with the coolant. Because of the unavailability and great uncertainty of these radiation properties, they are calculated from the electromagnetic theory of optics, and results are presented here. Depending on the contacting medium, six types of surfaces received consideration. They are the interfaces between uranium dioxide and sodium, uranium dioxide and steel, uranium dioxide and a gas, water and a gas, steel and a gas, as well as sodium and a gas. The spectral interface reflectance and the spectral absorptance from one side of the medium to the other side are evaluated for all wavelengths. These spectral properties are further integrated to yield the total hemispherical properties for a black body source over a temperature range from 1200 to 6000 K. Comparisons are made with available experimental data or calculated values, and the agreement is found to be generally good.