ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
S. H. Chan, H. H. Tseng
Nuclear Science and Engineering | Volume 71 | Number 2 | August 1979 | Pages 215-227
Technical Note | doi.org/10.13182/NSE79-A20415
Articles are hosted by Taylor and Francis Online.
In analyzing radiant energy exchange between fuel and coolant in a reactor, it is necessary to know the reflection, absorption, and emission characteristics of the fuel and its interface with the coolant. Because of the unavailability and great uncertainty of these radiation properties, they are calculated from the electromagnetic theory of optics, and results are presented here. Depending on the contacting medium, six types of surfaces received consideration. They are the interfaces between uranium dioxide and sodium, uranium dioxide and steel, uranium dioxide and a gas, water and a gas, steel and a gas, as well as sodium and a gas. The spectral interface reflectance and the spectral absorptance from one side of the medium to the other side are evaluated for all wavelengths. These spectral properties are further integrated to yield the total hemispherical properties for a black body source over a temperature range from 1200 to 6000 K. Comparisons are made with available experimental data or calculated values, and the agreement is found to be generally good.