ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
A. Sanchez, A. dos Santos
Nuclear Science and Engineering | Volume 131 | Number 3 | March 1999 | Pages 387-400
Technical Paper | doi.org/10.13182/NSE99-A2041
Articles are hosted by Taylor and Francis Online.
A new methodology that is applicable to individual nuclides is developed for the determination of the intermediate resonance (IR) parameters in the multigroup formalism. The method keeps the main steps commonly used for the determination of these parameters and is compatible with the methods utilized for the generation of the multigroup libraries for thermal and epithermal reactors. The proposed method does not impose any restriction on the formalism used to describe the resonances. Use is made of the computational approach used by the GROUPR module of the NJOY system (flux calculator option). A numerical scheme is presented to determine the IR parameters by means of an iterative approach. Numerical results for the IR parameters in a heterogeneous system composed of UO2 (238U only) and hydrogen as an external moderator are reported as a function of the dilution 0, heterogeneity factor , and temperature T for several epithermal groups of the MUFT structure. The results are consistent, as shown by the consistency checks performed.