ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
A. Bassini, F. Premuda, W. A. Wassef
Nuclear Science and Engineering | Volume 71 | Number 2 | August 1979 | Pages 87-99
Technical Paper | doi.org/10.13182/NSE79-A20401
Articles are hosted by Taylor and Francis Online.
For kernels appearing in the system of integral equations for Legendre moments of the angular flux, we propose a factorized form that also accounts for the anisotropy of scattering and works in the original Euclidean space. The stationary problem in the above simplified mathematical formulation for monoenergetic neutrons is then solved by a DKPL technique, i.e., a suitable basis is defined, in terms of Legendre polynomials of the space variables, and the corresponding Fourier series development is adopted for the space distribution to reduce the system of integral equations for such unknowns to an algebraic system on the unknown coefficients of their Fourier series expansion inside the homogeneous parallelepiped. This expansion converges in the mean and point-wise uniformly to the exact solution. Both critical and subcritical physical situations are considered, and accurate numerical results for isotropic scattering are obtained.