ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Douglas S. Drumheller
Nuclear Science and Engineering | Volume 72 | Number 3 | December 1979 | Pages 347-356
Technical Paper | doi.org/10.13182/NSE79-A20390
Articles are hosted by Taylor and Francis Online.
In many cases, the mixing of drops of hot liquid fuel with a more volatile coolant results in stable film boiling about the drops. At some later time, a disturbance can fragment the drops. This fragmentation increases the contact area between the liquids and results in a violent vaporization of the coolant. An understanding of this fragmentation mechanism is crucial to the prediction of the likelihood of violent fuel-coolant interactions. In this work, a fragmentation mechanism is proposed. It is shown how moderate pressure disturbances can cause the symmetrical collapse of a vapor film and allow the coolant to impact the drop. The impact is shown to be of sufficient strength to fragment the drop. This model quantitatively predicts the conditions necessary to lead to extensive fragmentation.