ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
R. D. McKnight
Nuclear Science and Engineering | Volume 75 | Number 1 | July 1980 | Pages 111-125
Technical Note | doi.org/10.13182/NSE80-A20322
Articles are hosted by Taylor and Francis Online.
A detailed validation study of the SDX fast reactor cell homogenization code, Benoist anisotropic diffusion coefficients, and an associated three-dimensional to one-dimensional unit cell modeling procedure has been in progress. These earlier results have investigated the standard zero power reactor (ZPR) plate-type unit cell The present study represents a complimentary validation effort for the ZPR pin calandria-type unit cell. The unit cell loading selected for this work consisted of a 5.08- × 5.08- × 30.48-cm voided calandria loaded with a 4 × 4 array of 0.957-cm (diam) × 15.24-cm mixed-oxide rods (15% PuO2/UO2). This unit cell was used in the pin zone measurements of the ZPR gas-cooled fast reactor program and also in the sodium-voided pin zone measurements of ZPR-6 Assembly 7. The validation effort consists of direct comparison with results of VIM (continuous energy Monte Carlo) calculations. The SDX/Gelbard methods have been shown to adequately predict both nonleakage and leakage effects for the voided pin calandria unit cell.