ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. G. Cacuci, C. F. Weber, E. M. Oblow, J. H. Marable
Nuclear Science and Engineering | Volume 75 | Number 1 | July 1980 | Pages 88-110
Technical Paper | doi.org/10.13182/NSE75-88
Articles are hosted by Taylor and Francis Online.
General sensitivity theory is presented for treating problems characterized by systems of nonlinear equations with nonlinear responses. The concept of the Fréchet derivative is shown to be fundamental to both differential and variational approaches. These two approaches, unified through the Fréchet derivative, form an operator viewpoint of sensitivity theory, leading to identical expressions for the adjoint equations and for the sensitivity functions. Also presented is an alternative sensitivity formalism for systems of nonlinear matrix equations, such as those arising from the application of numerical methods to many practical problems. This approach significantly enlarges the scope and versatility of sensitivity theory as it allows direct treatment of parameters that are purely of numerical-methods origin. To demonstrate the usefulness and practical applications of both operator and matrix formalisms, a significantly nonlinear transient problem in fast reactor thermal hydraulics is considered. Following the derivation and comparative analysis of the adjoint equations and sensitivity expressions using both formalisms, an extensive sensitivity study for this problem is presented. Conclusions about the future applicability of the general theory are also discussed.