ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Rouyentan Farhadieh
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 294-296
Technical Note | doi.org/10.13182/NSE81-A20306
Articles are hosted by Taylor and Francis Online.
Experimental study of the downward melting of a gas-releasing substrate solid surface by a hot liquid pool of different densities was performed. The molten phases of the solid and the liquid pool were mutually miscible. Heating of the liquid pool was obtained by a flat heater grid, suspended in the liquid above the solid surface. The liquid layer beneath the heater grid was thermally stable. After the onset of melting and gas release, the different flow regimes, identified in the case of nongas-releasing solid, were not encountered. The melting rate continuously increased with an increase in the ratio of the liquid density to the melted-solid density, ρ*, attaining a maximum at about ρ* ≈ 1.19, beyond which this rate decreased to even a lower value than that of nongas-releasing solid.